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On the construction of integrable closed chains with
quantum supersymmetry
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Abstract. We present a general prescription for the construction of integrable one-dimensional
systems with closed boundary conditions and quantum supersymmetry.

The quantum inverse scattering method (QISM) has proved to be fruitful in the study
of integrable models. A large part in the success of this theory has been the presence
of quantum algebras which provide a systematic means by which to construct solutions
of the Yang–Baxter equation. The usual approach to QISM involves the imposition of
periodic boundary conditions. However, this has the effect of breaking the quantum algebra
symmetry of the model for those which are derived from a quantum algebra invariant
R-matrix. This fact is the result of the non-cocommutativity of the co-product action.

Recently it has been observed that it is in fact possible, using another approach, to
construct models with closed boundary conditions whilst maintaining quantum algebra
invariance [1–5]. In all these examples theR-matrices were of the Hecke algebra type,
and this fact was exploited in the analysis of the models. What we wish to illustrate in
this letter is that quantum algebra invariant models with closed boundary conditions exist
on a more general level. Our approach is similar to the open chain case in that we use the
reflection equations [6] to evaluate the transfer matrix. If the trivial solution for the reflection
equation exists, we can build an integrable periodic quantum algebra invariant model. These
models exhibit behaviour similar to closed chain models with twisted boundary conditions,
however now the boundary conditions become sector dependent. For a discussion of this
point in the case of theXXZ chain we refer to [4].

Below we will work in the more general framework of quantum superalgebras, in view
of their increasing importance in the study of integrable correlated electronic systems [7, 8].
Throughout we will be dealing with supersymmetric, or more preciselyZ2-graded, vector
spaces. All matrix operators on these spaces are alsoZ2-graded (see [9, 10]). LetV be such
a Z2-graded vector space and consider an invertible spectral parameter dependent operator
R(u) which provides a solution to the Yang–Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(uv) (1)
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defined onV1⊗V2⊗V3 with the standard notationRij (u) ∈ End (Vi ⊗Vj ). The usual rule
for multiplication of tensor product operators applies; viz.

(A⊗ B)(C ⊗D) = (−1)[B][C]AC ⊗ BD (2)

whereA,B,C,D, are all homogeneous operators and [A] ∈ Z2 denotes the degree of the
operatorA. Equation (2) extends to inhomogeneous operators through linearity. We assume
further thatR(u) satisfes the following properties

1. Unitarity

R12(u)R21(−u) = f (u). (3)

2. Crossing unitarity

R
t1
12(u+ 2η)M1R

t1
21(−u)M−1

1 = f (u). (4)

Above, f (u) is an even scalar function ofu, ti denotes matrix supertransposition [10] in
the ith space,η is the crossing parameter andM = Mt is the crossing matrix, satisfying

[R12(u),M1M2] = 0. (5)

Using (5), equation (4) may be written in the equivalent form

M1R
t2
12(u)M

−1
1 R

t2
21(−u+ 2η) = f (u). (6)

We note that it was shown in [8] that anyR-matrix obtained from a loop representation of
an untwisted affine quantum superalgebra necessarily possesses the properties of unitarity
and crossing unitarity. Letπ3 denote the underlying irreducible representation with highest
weight 3 for the quantum superalgebraUq(g) and let ρ be theZ2-graded half-sum of
positive roots. We have from [8] thatη = 1

2(9,9 + 2ρ) where9 is the highest root ofg
andM = π3(q2hρ ) with hρ the element of the Cartan subalgebra dual toρ. We also remark
thatR(u) intertwines the co-product for the quantum superalgebra; i.e.

R(u)(π3 ⊗ π3)1(a) = (π3 ⊗ π3)1(a)R(u) ∀a ∈ Uq(g) (7)

where1,1 denote the two co-products forUq(g).
For such anR(u), introduce even matricesK+(u),K−(u) ∈ EndV satisfying the

following [6]

R12(u− v)K−1 (u)R21(u+ v)K−2 (v) = K−2 (v)R12(u+ v)K−1 (u)R21(u− v) (8)

R12(v − u)K+1 (u)M−1
1 R21(−u− v + 2η)M1K

+
2 (v)

= M1K
+
2 (v)R12(−u− v + 2η)M−1

1 K+1 (u)R21(v − u). (9)

Equations (8) and (9) are commonly referred to as the reflection equations. It has been
observed that equation (9) can be made redundant [6]. IfK−(u) satisfies (8), then

K+(u) = MK−(−u+ η)
can be shown to satisfy (9) by using the property (5). Here we will only concern ourselves
with those cases such thatK−(u) = I is a solution to the first reflection equation. In other
words theR-matrix must satisfy

R12(u)R21(w) = R12(w)R21(u) ∀u,w ∈ C (10)

and we then haveK+(u) = M.
Defining theconstantR-operator as

R = lim
u→∞R(u)
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we construct thedoubledmonodromy matrix

T (u) = R0N(u)R0,N−1(u) . . . R01(u)R10R20 . . . RN0

where the subscripts 0 and 1, 2, . . . , N denote the auxiliary and quantum spaces,
respectively. This operator satisfies the following Yang–Baxter relation

R12(u− v)T13(u)R21T23(v) = T23(v)R12T13(u)R21(u− v) (11)

which can be shown by induction on the length of the chainN . For the initial case of
N = 0 the above equation is equivalent to (10) withw→∞. Notice in (11) the presence
of constantR-matrices instead of spectral parameter dependentR-matrices, which appear
in the corresponding relation for the open chain case [8]. This simplifies drastically the
calculations of the Bethe ansatz (see, e.g., [2, 5]) which is one of the advantages of the
present approach.

Next define the transfer matrix by taking the following supertrace in the auxiliary space

t (u) = str0(M0T (u))

which can be shown to form a commuting family; viz.

[t (u), t (v)] = 0 ∀u, v ∈ C.
The proof of the above statement can be mimicked from that given in [8] for the open chain
case by utilizing the crossing unitarity property. SettingŘ(u) = PR(u), Ř = PR whereP
is theZ2-graded permutation operator [9, 10] we may write

t (u) = str0(M0R0N(u) . . . R01(u)R10 . . . RN0)

str0(M0ŘN0(u)ŘN−1,N (u) . . . Ř12(u)Ř12Ř23 . . . ŘN−1,N ŘN0)

with each of the operatoršRij (u) quantum algebra invariant as seen from (7); i.e.

[Ř(u), (π3 ⊗ π3)1(a)] = 0 ∀a ∈ Uq(g).
We now define the Hamiltonian to be given by

H = t ′(u)t−1(u)|u=0

where the prime indicates differentiation with respect to the variableu. Using the assumption
that theR-matrix is regular; i.e.

Ř(u)|u=0 = I ⊗ I
we may deduce that

t (u)|u=0 = str0(M0Ř12Ř23 . . . ŘN−1,N ŘN0)

= q(3,3+2ρ)Ř12Ř23 . . . ŘN−1,N

where we have used the result from [11] (lemma 2) that

(I ⊗ str)(I ⊗ π3(q2hρ ))Ř = q(3,3+2ρ)

with (3,3 + 2ρ) the eigenvalue of the second order Casimir for the associated classical
Lie superalgebra. Defining the local Hamiltonians

Hi,i+1 = d

du
Ři,i+1(u)

∣∣∣∣
u=0

we also have

t ′(u)|u=0 = q(3,3+2ρ)
N−1∑
i=1

Hi,i+1Ř12Ř23 . . . ŘN−1,N + str0(M0HN0Ř12Ř23 . . . ŘN−1,N ŘN0).
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In terms ofŘ(u), the Yang–Baxter equation reads

Řjk(u)Řij (u+ v)Řjk(v) = Řij (v)Řjk(u+ v)Řij (u)
where i, j, k can represent any embedding of the triple tensor space in the(N + 1)-fold
tensor product space. Lettingv → ∞, then differentiating with respect tou and setting
u = 0, yields the relation

HjkŘij Řjk = Řij ŘjkHij . (12)

Using this result we then find

str0(M0HN0Ř12Ř23 . . . ŘN−1,N ŘN0) = str0(M0Ř12Ř3 . . . ŘN−2,N−1HN0ŘN−1,N ŘN0)

= str0(M0Ř12Ř23 . . . ŘN−1,N ŘN0HN−1,N )

= q(3,3+2ρ)Ř12Ř23 . . . ŘN−1,NHN−1,N .

It follows that our expression for the Hamiltonian may be written as

H =
N−1∑
i=1

Hi,i+1+H0 (13)

where

H0 = GHN−1,NG
−1 (14)

and

G = Ř12Ř23 . . . ŘN−1,N . (15)

The quantum superalgebra invariance of the above Hamiltonian results from the quantum
superalgebra invariance of each of the matricesŘ(u). This general result is in complete
agreement with those cases studied in [1–5]. The Hamiltonian (13) describes a closed chain
in the sense that

GHi,i+1 = Hi+1,i+2G i = 1, 2, . . . , N − 2 GH0 = H12G.

These relations follow from (12). From the equations above we see immediately that
[G,H ] = 0 which is to be expected since

G = q−(3,3+2ρ)t (u)|u=0.

The termH0 in the Hamiltonian is a global operator; i.e. it acts non-trivially on all
sites. However, we can in fact interpretH0 as a local operator which couples only the sites
labelled 1 andN . To see this we consider

[Hi,i+1, H0] = Hi,i+1GHN−1,NG
−1−GHN−1,NG

−1Hi,i+1

= GHi−1,iHN−1,NG
−1−GHN−1,NHi−1,iG

−1 for i 6= 1

= 0 for i 6= N − 1

so thatH0 commutes with all the local observablesHi,i+1 exceptH12 andHN−1,N . Thus
effectively H0 acts only on the first andN th spaces. Notice that in the models studied
in [1–5], the discussion of periodicity and essential locality [5], relied on the fact that the
R-matrices were of Hecke algebra type. Our approach is much more general and can be
applied for anyR-matrix such thatK−(u) = 1 is a solution to the reflection equation (8).

In conclusion we have given a new general description of integrable periodic chains
which is manifestly invariant with respect to the underlying quantum superalgebra symmetry.
Our prescription gives a consistent generalization of those particular cases studies in [1–5]
but can also be applied to a larger class of (higher spin) models (e.g., spin-1XXZ chain).
Finally we would like to add that in the rational limitq → 1, our transfer matrix and
thus Hamiltonian reduce to the usual expressions for the periodic case using the fact that
limq→1 Ř = P .
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